ANNUAL WATER UALITY REPORT WATER TESTING PERFORMED IN 2018 ### **Our Mission Continues** 🎵 e are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2018. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education, while continuing to serve the needs of all our water users. Please remember that we are always available should you ever have any questions or concerns about your water. For more information about this report, or for any questions relating to your drinking water, please call Russ Handy, Utilities Superintendent, at (909) 799-4420. We remain vigilant in delivering the best-quality drinking water # **Important Health Information** While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. Some people may be more vulnerable to contaminants in drinking water the general population. than Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline. # **Community Participation** You are invited to participate in our public forum and voice your concerns about your drinking water. The City Council meets the second and fourth Tuesday of each month, beginning at 7:00 p.m. at the City of Loma Linda Council Chamber, 25541 Barton Road, Loma Linda, CA. ## Substances That Could Be in Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Contaminants that may be present in source water include: Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; Pesticides and Herbicides, that may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which can also come from gas stations, urban storm-water runoff, agricultural applications, and septic systems; Radioactive Contaminants, that can be naturally occurring or can be the result of oil and gas production and mining activities. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791. ### **Water Treatment Processes** The city removes contaminants in a variety of ways. All water is chlorinated to kill or remove bacteria, viruses, and pathogens that may be present. To accomplish this, water is passed through a cylinder containing calcium hypochlorite, which produces a chlorine solution. Then it flows into a storage tank from which the solution is pumped into a pipeline connected to the wellhead where it mixes with the water to provide contact time. A minimum of 0.2 milligrams per liter is maintained throughout the water system to assure all possible bacteriological contaminants are deactivated. There are 14 stations throughout the city where we collect bacteria samples and test chlorine residuals from. Blending is another form of treatment used to reduce/remove chemical and/or mineral contaminants. This is achieved by introducing water from a high-quality water source into a common pipeline where it is combined with a source of lower water quality. Water is then pushed through an inline mixer, which reduces the contaminant/mineral to levels which meet or exceed standards set forth by the EPA and State of California water quality regulations. The sources and combined water are tested at frequencies determined by the California Department of Public Health to ensure high-quality drinking water. The city uses this method to reduce levels of nitrate and arsenic. We also treat water to remove arsenic using a process known as adsorption. First, the pH of the well water is adjusted using carbon dioxide gas and chlorine to reduce the pH. This changes the arsenic into an oxidized state, making it more readily adsorbed. From there, it enters the treatment vessels, which contain an iron oxide media. As water passes through the bed of media, arsenic is removed to levels that meet or exceed the standards set by the EPA and California Department of Public Health. From there, the water passes through post-treatment filters, which remove and prevent loose media from entering the distribution system. The performance of the media is closely monitored by frequent testing of the treated water. When the treated water reaches arsenic levels close to 80 percent of the maximum allowable levels, filter maintenance is performed by back-washing and forward-flushing the media vessels or replacing the media. Water containing perchlorate and VOCs are also removed in filtration processes similar to our arsenic removal. If you have any questions regarding any of our treatment processes, please call (909) 799-4410 and ask to speak with one of our treatment operators or Utilities Superintendent. All water is closely monitored by trained and certified personnel to assure that it meets all water quality regulations set forth by the EPA and California Department of Public Health. ### Source Water Assessment To find and protect against any potential contamination sources to our water supply, the City of Loma Linda completed a drinking water source assessment for each well. These assessments were completed as follows: Mountain View Well # 3, November 1999; Richardson Well #4, February 2000; Richardson Well #3, November 2000; Mountain View Well #5, February 2003; Richardson Well #6, August 2009; Mt. View Well #6 and Richardson Well #5, April 2009. The drinking water source assessment is the first step in the development of a complete drinking water source protection program. The assessment includes a delineation of the area around a drinking water source through which contaminants might move and reach that drinking water supply. In addition, it includes an inventory of activities that might lead to the release of microbiological or chemical contaminants within the delineated area. This enables us to determine whether the drinking water source might be vulnerable to contamination. All information obtained during the process is provided to the California Department of Public Health for review. A copy of the assessment can be obtained by contacting us during regular business hours. # **Lead in Home Plumbing** Tf present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. (If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.) If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead. ### **Test Results** Our water is monitored for many different kinds of substances on a very strict sampling schedule. And, the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels. The State recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken. In 2018, we were required to monitor four consecutive quarters for 1,2,3-Trichloropropane from our wells. Unfortunately, we only took first-quarter samples. Monitoring will take place this year and reported in next year's report, if we have any positive results. Due to this oversight, we cannot be sure that our water is absent of this contaminant. However, the first-quarter results for 2018 were non-detects, as are all results from previous years. We do not believe that missing this monitoring requirement had any impact on public health and safety. We have already taken the steps to ensure that adequate monitoring and reporting will be performed in the future so that this oversight will not be repeated. | REGULATED SUBSTANCES | | | | | | | | | | |---|-----------------|-------------------|--------------------------|--------------------|-------------------|-----------|--|--|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | AMOUNT
DETECTED | RANGE
LOW-HIGH | VIOLATION | TYPICAL SOURCE | | | | 1,1-Dichloroethylene (ppb) | 2018 | 6 | 10 | 0.59 | 0-0.78 | No | Discharge from industrial chemical factories | | | | Arsenic (ppb) | 2018 | 10 | 0.004 | 5.99 | 4.2–7.5 | No | Erosion of natural deposits; runoff from orchards; glass and electronics production wastes | | | | Cadmium (ppb) | 2018 | 5 | 0.04 | 0.05 | 0-0.19 | No | Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints | | | | Chlorine (ppm) | 2018 | [4.0 (as
Cl2)] | [4 (as
Cl2)] | 0.4 | 0.2–1.62 | No | Drinking water disinfectant added for treatment | | | | Fluoride (ppm) | 2018 | 2.0 | 1 | 0.81 | 0.55–1.1 | No | Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories | | | | Gross Alpha Particle Activity (pCi/L) | 2018 | 15 | (0) | 3.816 | 0–17 | No | Erosion of natural deposits | | | | Hexavalent Chromium (ppb) | 2018 | NS¹ | 0.02 | 2.56 | 1.9–3.4 | No | Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis refractory production, and textile manufacturing facilities; erosion of natural deposits | | | | Nitrate [as nitrogen] (ppm) | 2018 | 10 | 10 | 2.41 | 0.24–6.5 | No | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | | | Nitrate + Nitrite (ppm) | 2018 | 10 | 10 | 3.55 | 0.14-9.3 | No | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | | | TTHMs [Total
Trihalomethanes] (ppb) | 2018 | 80 | NA | 1.85 | 0–3.7 | No | By-product of drinking water disinfection | | | | Thallium (ppb) | 2018 | 2 | 0.1 | 0.39 | 0-0.93 | No | Leaching from ore-processing sites; discharge from electronics, glass, and drug factories | | | | Uranium (pCi/L) | 2018 | 20 | 0.43 | 1.75 | 0-8.6 | No | Erosion of natural deposits | | | | Ton Water Complex Oallasted for Company | | | | | | | | | | | lap water samples collected for copper and Lead Analyses from Sample Sites throughout the community | | | | | | | | | |---|-----------------|-----|---------------|-----------------------------------|----------------------------------|-----------|---|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | AL | PHG
(MCLG) | AMOUNT
DETECTED
(90TH %ILE) | SITES ABOVE
AL/TOTAL
SITES | VIOLATION | TYPICAL SOURCE | | | Copper (ppm) | 2017 | 1.3 | 0.3 | 0.2 | 0/30 | No | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | | SECONDARY SUBSTANCES | | | | | | | | | |--------------------------------|-----------------|-------|---------------|--------------------|-------------------|-----------|---|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | SMCL | PHG
(MCLG) | AMOUNT
DETECTED | RANGE
LOW-HIGH | VIOLATION | TYPICAL SOURCE | | | Aluminum (ppb) | 2018 | 200 | NS | 9.3 | 0–56 | No | Erosion of natural deposits; residual from some surface water treatment processes | | | Chloride (ppm) | 2018 | 500 | NS | 14.7 | 6.1–25 | No | Runoff/leaching from natural deposits; seawater influence | | | Iron (ppb) | 2018 | 300 | NS | 9.3 | 0-41 | No | Leaching from natural deposits; industrial wastes | | | Manganese (ppb) | 2018 | 50 | NS | 3.21 | 0-7.1 | No | Leaching from natural deposits | | | Odor-Threshold (Units) | 2018 | 3 | NS | 1 | 1–1 | No | Naturally occurring organic materials | | | Specific Conductance (µS/cm) | 2018 | 1,600 | NS | 400 | 260–520 | No | Substances that form ions when in water; seawater influence | | | Sulfate (ppm) | 2018 | 500 | NS | 34.5 | 17–45 | No | Runoff/leaching from natural deposits; industrial wastes | | | Total Dissolved Solids (ppm) | 2018 | 1,000 | NS | 246.6 | 140-330 | No | Runoff/leaching from natural deposits | | | Turbidity (Units) | 2018 | 5 | NS | 0.25 | 0-1.3 | No | Soil runoff | | | UNREGULATED SUBSTANCES ² | | | | | | | | | |-------------------------------------|-----------------|--------------------|-------------------|--|--|--|--|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | AMOUNT
DETECTED | RANGE
LOW-HIGH | | | | | | | Boron (ppb) | 2018 | 75.85 | 49–100 | | | | | | | Bromoform (ppb) | 2018 | 0.9 | 0-1.8 | | | | | | | Dibromochloromethane (ppb) | 2018 | 0.95 | 0-1.9 | | | | | | | Sodium (ppm) | 2018 | 53 | 21–78 | | | | | | | Vanadium (ppb) | 2018 | 27.53 | 9–76 | | | | | | ### **OTHER SUBSTANCES** SUBSTANCE YEAR **AMOUNT** RANGE (UNIT OF MEASURE) SAMPLED **DETECTED** LOW-HIGH Bicarbonate (ppm) 2018 154 98-210 Calcium (ppm) 2018 31.1 2.6 - 70Carbonate (ppm) 2018 5.5 0 - 17Hardness (ppm) 2018 92.7 6.6 - 220Magnesium (ppm) 2018 3.57 0 - 10**pH** (Units) 2018 8.11 7.5-8.9 2018 0.77 - 2.6Potassium (ppm) 1.88 Total Alkalinity (ppm) 2018 136.6 110-170 ### **Definitions** **90th %ile:** The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections. AL (Regulatory Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. **μS/cm (microsiemens per centimeter):** A unit expressing the amount of electrical conductivity of a solution. MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste and appearance of drinking water. MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA. MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. NA: Not applicable. NS: No standard. **pCi/L** (picocuries per liter): A measure of radioactivity. PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA. **ppb** (parts per billion): One part substance per billion parts water (or micrograms per liter). **ppm (parts per million):** One part substance per million parts water (or milligrams per liter). ¹There is currently no MCL for hexavalent chromium. The previous MCL of 10 ppb was withdrawn on September 11, 2017. ² Unregulated contaminant monitoring helps U.S. EPA and the State Water Resources Control Board to determine where certain contaminants occur and whether the contaminants need to be regulated. # Where Does My Water Come From? The City of Loma Linda's customers are fortunate because we enjoy an abundant ground-water supply. We operate seven wells: Richardson Wells 3, 4, 5, and 6, and Mt. View Wells 3, 5, and 6. All of the city's wells are located in the Bunker Hill Basin, a vast, natural underground water storage area referred to as an aquifer. The Bunker Hill Basin stretches from the San Bernardino Mountain Range to the south hills of Loma Linda. The water that replenishes the Bunker Hill Basin comes from annual rainfall and snow melt from the San Bernardino Mountains. The wells are located in the north area of the City of Loma Linda. Loma Linda also uses a supplemental supply of water as needed from the City of San Bernardino Municipal Water Department. Both the City of Loma Linda and the City of San Bernardino Municipal Water Department fall under the same regulations for water set forth by the U.S. Environmental Protection Agency (U.S. EPA) and the California Department of Public Health (CDPH). In June 2006, an arsenic removal facility was installed to treat water at our Mt. View #3 and Mt. View #5 wells. This was done to maintain compliance in response to the EPA's decision to lower the MCL (maximum contaminant level) from 50 ppb to 10 ppb. In 2011, as part of a joint project with Lockheed Martin, Inc., two treatment facilities were installed to remove perchlorate and VOCs (volatile organic chemicals) from two new wells that were installed in 2010. This was done in an effort to isolate and remove those contaminants in the aquifer and keep them from migrating further into the Bunker Hill Basin.